skip to main content
skip to homework
Michael Bowen's VC Course Pages

Michael Bowen's VC Course Pages

Math V20, Fall 2016

Introduction and Announcements

Welcome to Math V20 (Precalculus Mathematics) at Ventura College. Michael Bowen (email) will be teaching this course during the fall 2016 term.

Important note: This web page is not a substitute for attending class; regular attendance is an expectation of this course. Modifications to homework assignments, and other important news announced in class, may not appear on this page for several days. You are still responsible for all assignments and in-class announcements even if they do not appear here! If you wish to verify information on this page, please contact the instructor.

Textbook Information

The ISBN number is provided as a convenience if you wish to purchase this item online. The VC bookstore may stock a different ISBN number; either may be used for the course. If you buy from the bookstore, obtain the least expensive version you can find; do not pay extra for MyMathLab, WebAssign, or other software. If you obtain the book from another source, please be sure to obtain the correct edition, as noted below. Older editions are, of course, much less expensive, but the homework problems are different.

Select any one of the following required texts:

    • Author: R.F. Blitzer
    • Title: Precalculus, Fifth Edition
    • ISBN-13: 978-0321837349
    • Comment: This is the online version, which may or may not be less expensive (taking shipping costs into account) than the versions available at the bookstore. A Kindle version is also available.
    • Author: R.F. Blitzer
    • Title: Precalculus, Fifth Custom Edition for Ventura College with MyMathLab
    • ISBN-13: 978-1269438728
    • Comment: This is the most expensive version, but it may be the only one available if the bookstore runs out of used books and you don't wish to purchase online. MyMathLab is not required for this section of the course, but you may be able to sell your access code to a student in another section that requires it and who purchased a used textbook. If you purchase this, do not buy the Package Component.

If you use the Kindle or other digital version, you will want to be able to refer to the information during class, so be sure you own a compatible device (laptop, mobile phone, or e-reader) that you are willing and able to bring to class with you every day.

This additional text is optional: (Note that when there is a conflict between the solution given in the textbook and the solution given in the student solutions manuals, the textbook is usually correct.)

    • Author: R.F. Blitzer
    • Title: Student Solutions Manual for Precalculus, Fifth Edition
    • ISBN-13: 978-0321837493

Holidays

Classes at Ventura College will meet Monday through Thursday each week of the term, excepting only the dates listed below.

Please note that Columbus Day and Halloween are not Ventura College holidays.

Homework Club (Office Hours) During Finals Period

Final Examination

Place/date/time:  Room SCI-351, Wednesday 14 December 2016, 12:30 p.m.

Important Note: This is 90 minutes earlier than our usual class meeting time!

Be sure that your big party to celebrate the end of finals occurs after the appropriate date. Requests for administration of early or late finals that require the instructor to reschedule his work or make a special trip to campus are subject to a deduction of points, regardless of the reason for the request.

Homework Assignments

-->
Overview: This table lists homework assignments and announces examinations. It contains four columns. First row: Column headers. Second and subsequent rows: The homework due for each section covered in the course. Details: The first row is the table header, with column headings describing the data listed in the main body of the table. The second and subsequent rows contain section numbers and titles, assigned problem numbers, and extra credit problems, if any. Column one of these rows contains a section number. Column two of these rows contains the corresponding section title. Column three lists the problem numbers for each section. Column four lists extra credit problems, if any.
§ Title Problems E.C.
Syllabus Worksheet (obtain a copy) (NOTE: This assignment is worth 15 points.)
P.1 Algebraic Expressions, Mathematical Models, and Real Numbers 1–101 EOO
P.2 Exponents and Scientific Notation 1–63 ODD
P.3 Radicals and Rational Exponents 1–107 ODD
P.4 Polynomials 9–89 EOO 108
P.5 Factoring Polynomials 1–113 EOO (all odds recommended if time permits as this is a very important section)
P.6 Rational Expressions 1–57 EOO
P.7 Equations 1–123 ODD
P.8 Modeling with Equations (No assignment)
P.9 Linear Inequalities and Absolute Value Inequalities 15–91 EOO (all odds recommended if time permits)
1.1 Graphs and Graphing Utilities 13–27 ODD; 41–46 ALL; 51; 53; 75–81 ODD
1.2 Basics of Functions and Their Graphs 1–89 EOO
1.3 More on Functions and Their Graphs 1–75 ODD 82
1.4 Linear Functions and Slope 1–69 EOO
1.5 More on Slope 1–19 ODD
1.6 Transformations of Functions 1–117 EOO
1.7 Combinations of Functions; Composite Functions 51–73 ODD
1.8 Inverse Functions 1–9 ODD; 13–25 EOO; 27; 29–38 ALL; 39–51 EOO (part (b) is optional)
1.9 Distance and Midpoint Formulas; Circles 1–61 EOO
1.10 Modeling with Functions (No assignment)
Chapter Test 1

Sections P.1–P.9 (excluding P.8) and 1.1–1.9

Recommended study-guide problems

(These are sample exam-like problems for practice purposes; do not turn in with your homework)
(For students with minimal study time)
Page 138 (Test): 1–9 ODD; 13–27 ODD; 33–51 ODD; 55; 57; 59
Page 289 (Test): 1–25 ODD; 29; 31; 35
(For students with additional study time) The above plus
Page 138 (Test): Even numbered problems immediately following each odd problem suggested in "minimal study time" above;
Page 289 (Test): Even numbered problems immediately following each odd problem suggested in "minimal study time" above
(For true enthusiasts) The above plus
Page 135 (Review Exercises): 1–31 ODD; 41–119 ODD; 123–139 ODD; 143–147 ODD; 155–167 ODD;
Page 284 (Review Exercises): 15–35 ODD; 36–42 ALL; 45–59 ODD; 65–97 ODD; 101–109 ALL; 112–119 ALL; and
Additional problems taken from the unassigned homework exercises
2.1 Complex Numbers Optional: 1–19 ODD (if you need extra practice with addition, subtraction, and multiplication)
Required: 21–49 ODD
2.2 Quadratic Functions 9–43 ODD
2.3 Polynomial Functions and Their Graphs 1–39 ODD; 41–61 EOO; 63
2.4 Dividing Polynomials; Remainder and Factor Theorems 1–45 ODD
2.5 Zeros of Polynomial Functions 17–51 ODD
2.6 Rational Functions and Their Graphs 9–19 ODD; 57–77 EOO
2.7 Polynomial and Rational Inequalities 5–41 EOO; 43–59 ODD
2.8 Modeling Using Variation (Extra credit only; see next column) → 34; 38
3.1 Exponential Functions 11–33 ODD
3.2 Logarithmic Functions 1–41 EOO; 43; 45; 47–52 ALL; 53–99 ODD
3.3 Properties of Logarithms 1–69 EOO (all odds recommended if time permits); 71–77 ODD
3.4 Exponential and Logarithmic Equations 1–89 EOO
3.5 Exponential Growth and Decay; Modeling Data (No assignment) 48
Chapter Test 2

Sections 2.1–2.7 and 3.1–3.4

Recommended study-guide problems

(These are sample exam-like problems for practice purposes; do not turn in with your homework)
(For students with minimal study time)
Page 410 (Test): 1–4 ALL; 11–27 ODD
Page 488 (Test): 1–17 ODD; 21
(For students with additional study time) The above plus
Page 410 (Test): 6; 10; 12; 16–24 EVEN; 28
Page 488 (Test): 2–22 EVEN
(For true enthusiasts) The above plus
Page 406 (Review Exercises): 1–17 ODD; 25; 27; 31–51 ODD; 55–77 ODD
Page 484 (Review Exercises): 5; 7; 9; 13–31 ODD; 37–45 ODD; 51–59 ODD; 65–79 ODD
Additional problems taken from the unassigned homework exercises
4.1 Angles and Radian Measure 1–75 EOO
4.2 Trigonometric Functions: The Unit Circle 1–69 EOO
4.3 Right Triangle Trigonometry 1–41 EOO; 53–59 ODD
4.4 Trigonometric Functions of Any Angle 1–21 ODD; 25–85 EOO
4.5 Graphs of Sine and Cosine Functions 7–59 EOO
4.6 Graphs of Other Trigonometric Functions (Optional) 5–11 ODD; 17–23 ODD; 29–43 ODD
4.7 Inverse Trigonometric Functions 1–71 ODD
4.8 Applications of Trigonometric Functions (Optional) 1–39 ODD; 45; 57; 61
5.1 Verifying Trigonometric Identities 1–57 EOO
5.2 Sum and Difference Formulas 1–61 EOO
5.3 Double-Angle, Power-Reducing, and Half-Angle Formulas 1–37 ODD (see solution to #36) 42; 46
5.4 Product-to-Sum and Sum-to-Product Formulas (Optional; recommended for anyone planning to take Physics V06 in the future) 3–11 ODD; 17–37 ODD
5.5 Trigonometric Equations 11–23 ODD; 25–113 EOO
Chapter Test 3

Sections 4.1–4.7 (excluding 4.6) and 5.1–5.5 (excluding 5.4)

Monday 28 November

Recommended study-guide problems

(These are sample exam-like problems for practice purposes; do not turn in with your homework)
(For students with minimal study time)
Page 618 (Test): 1–11 ALL; 13–15; 18; 20
Page 680 (Test): 1–18 ALL
(For students with additional study time) The above plus
Page 615 (Review Exercises): 1–77 ODD; 95–111 ODD
Page 678 (Review Exercises): 1–31 ODD; 35–38 ALL; 39; 41; 51–67 ODD
(For true enthusiasts) The above plus
Page 615 (Review Exercises): 2–78 EVEN; 94–112 EVEN
Page 678 (Review Exercises): 2–30 EVEN; 40; 42; 50–66 EVEN; and
Additional problems taken from the unassigned homework exercises
6.1 The Law of Sines 1–37 ODD
6.2 The Law of Cosines 1–29 ODD
6.5 Complex Numbers in Polar Form; DeMoivre's Theorem 27–75 ODD
8.3 Matrix Operations and Their Applications 27–43 EOO
8.4 Multiplicative Inverses of Matrices and Matrix Equations 13; 15; 17; 37; 39; 41
8.5 Determinants and Cramer's Rule 11–35 EOO
10.1 Sequences and Summation Notation 1–11 ODD; 23; 25; 27; 43–53 ODD 56; 58; 60
10.5 The Binomial Theorem 1–45 EOO; 47 50; 54 (you will be doing problems like #54 early in your first calculus course)
Final Examination

Chapters 6, 8, 10

Recommended study-guide problems

(These are sample exam-like problems for practice purposes; do not turn in with your homework)

Bring your Chapter 6/8/10 homework to the final for up to 20 points credit! (Not extra credit!)

Exam starts at 12:30 p.m. on Wednesday 14 December
(For students with minimal study time)
Page 769 (Test): 1–5 ALL; 11–14 ALL (note: there will definitely be a problem involving computing a power or root of a complex number on the final)
Page 918 (Test): 1; 2; 5; 6; 8 (note: there will definitely be an inverse-matrix problem on the final); 10 (note: there will definitely be a Cramer's rule problem on the final); if you have a bit more time, also try problems 7 (show that $AB=I$) and 9
Page 1087 (Test): 5; 17; 18
(For students with additional study time) The above plus
Page 766 (Review Exercises): 1–12 ALL; 57–64 ALL; 65–81 ODD
Page 915 (Review Exercises): (Inverse matrices) → 37–44 ALL; (Determinants/Cramer's Rule) → 46–49 ALL; 52–55 ALL
Page 1084 (Review Exercises): 63–71 ODD
(For true enthusiasts) The above plus
Page 766 (Review Exercises): 17; 20; 66–80 EVEN
Page 915 (Review Exercises): 21–24 ALL; 50; 51 (for these last two, pick a row or column containing lots of zeros)
Page 1084 (Review Exercises): 64–70 EVEN; and
Additional problems taken from the unassigned homework exercises

Course Handouts and Study Aids

The documents listed below are available for viewing or download. The list below provides links to download free software to read the file formats of the various documents.

Course Handouts

Study Aids

Will You Succeed or Fail in Mathematics?

This checklist is adapted from a handout prepared by math and philosophy instructor Steve Thomassin. It will allow you to compare your approach to a mathematics course to the approaches taken by successful … and unsuccessful … students.

Overview: This table lists typical attributes of successful and unsuccessful mathematics students. It contains three columns. First row: Column headers. Second and subsequent rows: Student attributes. Details: The first row is the table header, with column headings describing the data listed in the main body of the table. The second and subsequent rows describe specific attributes that contribute to success or failure. Column one of these rows specifies whether the attribute is related to attitude, class work, homework, or getting help. Column two of these rows contains attributes of successful students. Column three of these rows contains attributes of unsuccessful students.
Attribute Type Predictor of Success Predictor of Failure
Attitude Focus on things that are under your control. Blame things that are out of your control (the text, the instructor, or "the system") for your difficulties.
Be optimistic. Believe that you can do it. Be pessimistic. Convince yourself that you will fail.
Be positive. Find ways to make math interesting and fun. Be negative. Find ways to make math dull and painful.
Be open. See the uses, power, patterns, and magic of mathematics. Be closed. Blind yourself to math's uses and its practical and esthetic value.
Be practical. Make yourself aware of the doors that passing each math class opens to you. Be impractical. Ignore the doors that open when you pass a math class.
Class Work Attend every class. Aim for perfect attendance, even if you already know it all. Be absent often. Dig a hole so deep that you cannot climb out except by dropping the course.
Be focused. Concentrate on the math topic at hand. Be mentally elsewhere. Daydream. Talk. Distract and annoy neighboring students.
Take good notes. Solve problems along with the instructor. Avoid participating in the discussion. Just watch the instructor.
Be inquisitive. Ask questions so that the instructor knows what you would like to learn more about. Be uninterested. Make the instructor guess what it is that you might be confused about.
Homework Be regular. Always do at least some homework before the next class, and finish by the due date. Be sporadic. Do homework only when it easily fits your schedule.
Invest time. Spend double to triple the amount of in-class time. Invest little time. Spend less time doing homework than you spend in class.
Review notes; read text; do all assigned problems (maybe even more), and check the answers. Ignore notes and text explanations; try a few problems, and don't bother checking to see if they are right.
Getting Help When needed, take advantage of all opportunities: study groups, tutors, instructor office hours. Even when lost, never seek assistance.

http://academic.venturacollege.edu/mbowen/courses/2016aki/m20.shtml

Michael Bowen's VC Course Pages: Math V20, Fall 2016

Last modified: Sunday 06 August 2017 23:57:32
Created by Michael Bowen (Professor of Mathematics)
Department of Mathematics, Ventura College, California, USA
Ventura College is an independent college within the Ventura County Community College District.
Please email comments, questions, suggestions, or a notification if you find a "broken" link.
As an alternative, you may leave a voice message at (805) 289–6256.

User agents known to render this document correctly include:

Trademarks: Adobe®, Acrobat®, Macromedia®, and Shockwave® are registered trademarks, and Acrobat Reader™ is a trademark, of Adobe Systems Incorporated in the United States and/or other countries. Macintosh® is a registered trademark, and Safari™ is a trademark, of Apple, Inc. Borland® is a registered trademark of Borland Software Corporation in the United States and other countries. This web page is an independent publication and has not been authorized, sponsored, or otherwise approved by Borland Software Corporation. Corel® and WordPerfect® are registered trademarks of Corel Corporation. The buttons, name, and corporate logo (the "CC" in a circle) of Creative Commons™ are trademarks of Creative Commons. NoteTab™ is a trademark of Fookes Software. Zip® is a registered trademark of Iomega Corporation in the United States and/or other countries. Microsoft®, Visual C++®, Visual Studio®, and Windows® are registered trademarks of Microsoft Corporation. Firefox® is a registered trademark of the Mozilla Foundation. Netscape® and Mozilla® are registered trademarks of Netscape Communications Corporation. UNIX® is a registered trademark of The Open Group. Opera Software™ is a trademark of Opera Software ASA. Oracle® and Java® are registered trademarks of Oracle and/or its affiliates. Norton AntiVirus® is a registered trademark of Symantec Corporation. Maple™ is a trademark of Waterloo Maple Inc. World Wide Web Consortium® and W3C® are registered trademarks, and Amaya™ and XHTML™ are trademarks, of the World Wide Web Consortium. All other trademarks and service marks are the property of their respective owners.

Copyrights: The orange-and-black scales-of-justice logo is in the public domain. Opera browser copyright © by Opera Software ASA. Ventura College pirate logos and "Set Your Course" logos copyright © by the Ventura County Community College District. W3C logos copyright © by the World Wide Web Consortium. WAVE copyright © 2014 by WebAIM. Remainder of page copyright © 2005–2017 by Michael Bowen. All rights reserved.

Creative Commons License

Michael Bowen's Ventura College Course Pages are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License - external link . You are also bound by this site's Terms of Use.


Ventura College 'Set Your Course' logo
Click to return to the top of this page View the terms of use View the CSS validator home page View the W3C Validator home page View the Web Accessibility Evaluation Tool (WAVE) home page