Basic Geometry Review
For Trigonometry Students
Undefined Geometric Terms

Point A

Line \overline{AB}

Plane ABC
Half-lines (Rays)

- This is a ray named \overrightarrow{AB}
- Point A is the “vertex” or “endpoint” of the ray; write the name of the endpoint first
- Definition: \overrightarrow{AB} is the set of all points C on \overrightarrow{AB} such that A is not strictly between B and C
Line Segments

- The **green** portion is line segment \overline{AB}
- Points A and B are “endpoints”; the distance between them is written AB (without the line segment over it)
- Definition: \overline{AB} is bounded by endpoints A and B; it contains every point on \overline{AB} that is between endpoints A and B
Circles (1 of 5)

- Definition: A circle is the set of all points lying in a plane at a fixed distance \(r \) (the “radius”) from a given point (the “center” of the circle)
- A “diameter” \(d \) is any line segment whose endpoints lie on the circle, and which passes through (contains) the center of the circle
Circles (2 of 5)

- A “secant line” is any line that touches the circle at exactly two points.
- A “tangent line” is any line that touches the circle at exactly one point.
- A “chord” is any line segment whose endpoints lie on the circle, but which does not pass through the exact center of the circle.
Circles (3 of 5)

- The “circumference” is the full outer edge of the circle, or the length of it.
- An “arc” is any continuous portion of the circumference.
- A “sector” is the wedge-like shape bounded by two radii and the arc that lies between them.
- A “segment” is the shape formed by a chord and the arc that extends between its endpoints.
Circles (4 of 5)

Formulas:
- **Diameter:** \(d = 2r \)
- **Circumference:** \(C = 2\pi r = \pi d \)
- **Area:** \(A = \pi r^2 \)
- **“Pi”:**
 - \(\pi \approx 3.141592653589793238… \)
 - \(\pi = \frac{C}{d} \)
Circles (5 of 5)

- Equations and unit circles
 - The equation of a circle whose center is located at the origin of a Cartesian coordinate system is
 \[x^2 + y^2 = r^2 \]
 - A “unit circle” is a circle that has a radius of one unit \((r = 1)\)
 - So the equation of a unit circle whose center is located at the origin of a Cartesian coordinate system is
 \[x^2 + y^2 = 1 \]
Angles

- An “angle” $\angle BAC$ (or $\angle CAB$ or $\angle A$, if the shorter name is clear) is the figure formed when two rays (the “sides” or “legs” of the angle) share a single endpoint A (the “vertex” of the angle); the vertex is always the middle letter.

- Latin or Greek lowercase letters, such as a, b, θ, φ, α, or β, are also used to name angles in trigonometry and higher math.
Angle Measure (1 of 3)

- Pac-Man’s jaw forms an angle (the black wedge in the figure); the “measure” of the angle is a number that tells us about the size of the wedge (how far open Pac-Man’s jaw has become)
- The angle’s measure increases as Pac-Man opens up wider
Angle Measure (2 of 3)

- One unit often used to measure angles is the “degree” (symbol: °)
- Visit this web page* to learn about different kinds of angles:
 - Acute angles (measure $m < 90°$)
 - Right angles ($m = 90°$)
 - Obtuse angles ($90° < m < 180°$)
 - Straight angles ($m = 180°$)
 - Reflex angles ($180° < m < 360°$)

* http://www.mathopenref.com/angle.html
Angle Measure (3 of 3)

- If line segments, rays, or lines cross at a right angle ("perpendicular"), then a small square is often added to indicate this.

- Two angles whose measures add up to 90° are "complementary".

- Two angles whose measures add up to 180° are "supplementary".
The intuitive polygon:

- Draw a random assortment of 3 or more points in a plane
- Connect them so that each point is the endpoint of exactly two line segments, and no point lies on a given line segment unless it is one of that segment’s two endpoints
- The result is a “polygon” (some examples are shown at right)
The strictly defined polygon (you won’t be tested on this): A “polygon” is a closed path composed of a finite sequence of straight line segments.

Other terms (you may be tested on these):
- The line segments are called “sides” of the polygon.
- Each corner is called a “vertex” of the polygon.
“Polygons” are what most people would call “shapes” … but there are some restrictions:

- Polygons have no “curvy” parts; the definition (see the previous slide) requires each side to be straight.
- So, although circles, ellipses, parabolas, and other “curvy” things are called shapes also, they are not polygons.
Polygons (4 of 5)

- Mathematicians classify polygons by the number of sides (or vertices) they have; the names used have mostly Greek roots:
 - 3 sides = “triangle” or “trigon”
 - 4 sides = “quadrilateral” or “tetragon”
 - 5 sides = “pentagon”
 - 6 sides = “hexagon”
 - 8 sides = “octagon”, etc.
Some polygons possess symmetry; terms used for certain types of symmetry include:

- “Equiangular”: All the vertex angles have equal measures
- “Cyclic”: All the vertices lie on a circle
- “Equilateral”: All the sides, or edges, have the same length
- “Regular”: The polygon is both cyclic and equilateral
Triangle Properties (1 of 2)

- A “triangle” is a polygon that has 3 sides
- The measures of the three vertex angles always add up to 180°
- An equilateral triangle is always equiangular (and vice-versa); if either of these is true, then both are true, and the measure of each vertex angle is exactly 60°
- An equilateral triangle is the only kind of triangle that is regular
Triangle Properties (2 of 2)

- If the lengths of at least two sides of a triangle are equal, then it is called an “isosceles triangle”

- If all three sides of a triangle have different lengths, then it is called a “scalene triangle”
Right Triangles

- If one vertex angle of a triangle is a right angle (has a measure of 90°), then the triangle is a “right triangle”, having these properties:
 - The two remaining vertex angles are automatically complementary
 - It may be either scalene or isosceles; if it is isosceles, then the two remaining vertex angles both have equal measures of exactly 45°
 - The Pythagorean theorem (Appendix A) relates the lengths of the 3 sides
Quadrilateral Properties (1 of 2)

- The measures of the four vertex angles always add up to 360°
- An equilateral quadrilateral is called a “rhombus”; it is not necessarily equiangular or square
- An equiangular quadrilateral is called a “rectangle”; it is not necessarily equilateral
- All four vertices of a rectangle are right angles, and therefore have measures of 90°
Quadrilateral Properties (2 of 2)

- A “square” is a quadrilateral that is both equilateral and equiangular.

- A square is the only kind of quadrilateral that is regular.
Appendix A: Pythagorean Theorem

- If c is the length of the hypotenuse (longest side), and a and b are the lengths of the legs (shorter sides), then

 $$a^2 + b^2 = c^2$$

 - The hypotenuse is always the side that does not touch the right angle
 - The figure depicts a scalene triangle; some right triangles might also be isosceles, but they can never be equilateral
Appendix B: Linear Measurements

- **English:**
 - 1 inch = 2.54 cm
 - 1 foot = 12 inches
 - 3 feet = 1 yard
 - 5280 feet = 1 mile

- **SI (metric):**
 - 1 m = 100 cm
 - 1 m = 1000 mm
 - 1 km = 1000 m
Appendix C: The Greek Alphabet

<table>
<thead>
<tr>
<th>Letter</th>
<th>Symbol</th>
<th>Pronunciation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Α α</td>
<td>alpha</td>
<td>(άλφα)</td>
</tr>
<tr>
<td>Β β</td>
<td>beta</td>
<td>(βήτα)</td>
</tr>
<tr>
<td>Γ γ</td>
<td>gamma</td>
<td>(γάμμα)</td>
</tr>
<tr>
<td>Δ δ</td>
<td>delta</td>
<td>(δέλτα)</td>
</tr>
<tr>
<td>Ε ε</td>
<td>epsilon</td>
<td>(έψιλον)</td>
</tr>
<tr>
<td>Ζ ζ</td>
<td>zeta</td>
<td>(ζήτα)</td>
</tr>
<tr>
<td>Η η</td>
<td>eta</td>
<td>(ήτα)</td>
</tr>
<tr>
<td>Θ θ,ϑ</td>
<td>theta</td>
<td>(θήτα)</td>
</tr>
<tr>
<td>Ι ι</td>
<td>iota</td>
<td>(ιώτα)</td>
</tr>
<tr>
<td>Κ κ</td>
<td>kappa</td>
<td>(κάππα)</td>
</tr>
<tr>
<td>Λ λ</td>
<td>lambda</td>
<td>(λάμδα)</td>
</tr>
<tr>
<td>Μ μ</td>
<td>mu</td>
<td>(μι)</td>
</tr>
<tr>
<td>Ν ν</td>
<td>nu</td>
<td>(νι)</td>
</tr>
<tr>
<td>Ο ο</td>
<td>omicron</td>
<td>(όμικρον)</td>
</tr>
<tr>
<td>Π π</td>
<td>pi</td>
<td>(πι)</td>
</tr>
<tr>
<td>Ρ ρ</td>
<td>rho</td>
<td>(ρω)</td>
</tr>
<tr>
<td>Σ σ,ζ</td>
<td>sigma</td>
<td>(σίγμα)</td>
</tr>
<tr>
<td>Τ τ</td>
<td>tau</td>
<td>(ταυ)</td>
</tr>
<tr>
<td>Υ υ</td>
<td>upsilon</td>
<td>(ύψιλον)</td>
</tr>
<tr>
<td>Φ φ,ϕ</td>
<td>phi</td>
<td>(φι)</td>
</tr>
<tr>
<td>Χ χ</td>
<td>chi</td>
<td>(χι)</td>
</tr>
<tr>
<td>Ψ ψ</td>
<td>psi</td>
<td>(ψι)</td>
</tr>
<tr>
<td>Ω ω,ϖ</td>
<td>omega</td>
<td>(ωμέγα)</td>
</tr>
</tbody>
</table>